Appendix of "Disentangling Light Fields for Super-Resolution and Disparity Estimation"

Yingqian Wang, Longguang Wang, Gaochang Wu, Jungang Yang, Wei An, Jingyi Yu, *Fellow, IEEE*, and Yulan Guo, *Senior Member, IEEE*

In this Appendix, we present the details of the SAI-MacPI conversion, i.e., the LF reshape operation. We use the notations in Table 1 for formulation. As shown in Fig. 1, an LF $\mathcal{L} \in \mathbb{R}^{U \times V \times H \times W}$ can be organized into a macro-pixel image (MacPI) $\mathcal{I}_{MacPI} \in \mathbb{R}^{UH \times VW}$ or an array of sub-aperture images (SAIs) $\mathcal{I}_{SAIs} \in \mathbb{R}^{UH \times VW}$. The LF reshape operation is defined as the transformation between these two representations. To convert LFs from one representation to the other representation, the one-to-one mapping function between MacPI and SAIs needs to be built. Without loss of generality, we take spatial-to-angular reshape as an example, namely, to find point $(\xi, \eta) \in \mathcal{I}_{MacPI}$ corresponding to a known point $(x, y) \in \mathcal{I}_{SAIs}$. We first calculate the angular coordinates u and v of point (x, y)according to

$$u = \lceil x/H \rceil = \lfloor x/H \rfloor + 1, \tag{1}$$

$$v = \left\lceil y/W \right\rceil = \left| y/W \right| + 1.$$
⁽²⁾

Using the angular coordinates, the spatial coordinates h and w can be derived by

$$h = x - (u - 1) H = x - |x/H|H,$$
(3)

$$w = y - (v - 1)W = y - \lfloor y/W \rfloor W.$$
(4)

Since \mathcal{I}_{SAIs} and \mathcal{I}_{MacPI} represent the same LF, (x, y) and (ξ, η) in these two representations have the same spatial and angular coordinates. Therefore, we find (ξ, η) corresponding to (u, v, h, w) as follows:

$$\begin{aligned} \xi &= U\left(h-1\right) + u \\ &= U\left(x - \lfloor x/H \rfloor H - 1\right) + \lfloor x/H \rfloor + 1 \\ &= U\left(x-1\right) + \lfloor x/H \rfloor \left(1 - UH\right) + 1, \end{aligned} \tag{5}$$

$$\eta = V (w - 1) + v$$

= $V (y - \lfloor y/W \rfloor W - 1) + \lfloor y/W \rfloor + 1$ (6)
= $V (y - 1) + \lfloor y/W \rfloor (1 - VW) + 1.$

The angular-to-spatial reshape can be derived following a similar approach:

$$x = H (u - 1) + h$$

= $H (\xi - 1) + |\xi/U| (1 - UH) + 1,$ (7)

$$y = W (v - 1) + w$$

= W (\eta - 1) + \bigl[\eta / V\bigr] (1 - VW) + 1. (8)

TABLE 1: Notations used in the appendix.

Notation	Representation
$\mathcal{L} \in \mathbb{R}^{U \times V \times H \times W}$	a 4D LF
$\mathcal{I}_{SAIs} \in \mathbb{R}^{UH \times VW}$	a 2D SAI array
$\mathcal{I}_{MacPI} \in \mathbb{R}^{UH \times VW}$	a 2D MacPI
$U, V \in \mathbb{Z}_+$	angular size
$H, W \in \mathbb{Z}_+$	spatial size
$u, v \in \mathbb{Z}_+$	angular coordinate
$h, w \in \mathbb{Z}_+$	spatial coordinate
$(x,y) \in \mathbb{Z}^2_+$	coordinate in \mathcal{I}_{SAIs}
$(\xi,\eta)\in\mathbb{Z}^2_+$	coordinate in \mathcal{I}_{MacPI}
[·]	round-down operation

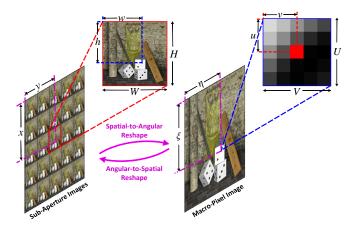


Fig. 1: An illustration of the LF reshape operation. Since the SAIs and the MacPI represent the same LF, the objective of LF reshape is to re-organize LFs between these two representations.